Math 102

Krishanu Sankar

October 18, 2018

Announcements

Review Sessions for Thursday 10/25 Midterm

- Monday 10/22 in Buchanan A201, 3-7pm
- Tuesday 10/23 in CHBE 101, 3-7pm
- Bring questions if you have them!
- Midterm covers material up to and including Optimization.
- See the 'Midterm' tab on Canvas.

Goals Today

Data fitting

- Formula for nonzero *y*-intercept.
- Spreadsheet (demo)
- The Chain Rule

Last Time - Best fit line

Points: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ Line: y = ax for some aResiduals: *i*-th residual is $r_i = ax_i - y_i$

 $SSR(a) = r_1^2 + \ldots + r_n^2$ is minimized at $a = \frac{x_1y_1 + \ldots + x_ny_n}{x_1^2 + \ldots + x_n^2}$

Line with Nonzero y-intercept

Points:
$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

Line: $y = ax + b$ for some slope a , and y -intercept b
Residuals: *i*-th residual is

$$r_i = ax_i + b - y_i$$

$$SSR(a,b) = r_1^2 + \ldots + r_n^2$$

= $(ax_1 + b - y_1)^2 + \ldots + (ax_n + b - y_n)^2$

Two variables: requires multivariable calculus!

General best fit

•
$$y = \mathsf{Bacterial} \ \mathsf{survivors}$$

Question: Why would it be a bad idea to fit the data with a line?

General best fit

Points:
$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

Line: $y = f(x)$ for some function $f(x)$
Residuals: *i*-th residual is

$$r_i = f(x_i) - y_i$$

$$SSR = r_1^2 + \ldots + r_n^2$$

= $(f(x_1) - y_1)^2 + \ldots + (f(x_n) - y_n)^2$

(Spreadsheet demo)

The Chain Rule

Example: Calculate the derivative.

$$h(x) = \sqrt{x^5 + 11}$$